Was zerstört (Denaturierung genannt) Eiweiss, Protein und damit unser Genom?

5% der DNA Proben sind unbrauchbar und auf dem Weg von der Backe über das Stäbchen bis zum Ergebnis im Labor kann einiges schief laufen, bis hin zum verunreinigten Testkit (man lese darüber auch über den NSU Fall, wo man plötzlich glaubte, die Täter über DNA Spuren mit einem Kindesmord in Verbindung bringen zu können …)

https://de.wikipedia.org/wiki/Denaturierung_(Biochemie)

Denaturierung durch physikalische Einflüsse …

Denaturierung durch chemische Einflüsse

Ursachen der Proteindenaturierung können zum Beispiel chemische Substanzen wie einige Säuren, Basen, Salze (z. B. Guanidiniumsalze), Detergentien oder Harnstoff sein. Eiweißstrukturen können auch durch Schwermetalle beeinflusst werden, da die Ionen Komplexstrukturen mit den Aminosäureresten bilden und so die biologisch aktive Struktur des Proteins verändern.

Säure- und Lauge-Denaturierung- der pH Wert

Enzyme haben, je nach ihrem Wirkort, einen optimalen pH-Wert-Bereich für ihre Aktivität. Enzyme von sauren Wirkungsorten denaturieren bereits bei leicht basischen Bedingungen (blau) und umgekehrt (grün).

Je nachdem, wie der pH-Wert der natürlichen Umgebung des Proteins ist, besitzen Proteine ein pH-Optimum. Dieses Optimum kann im sauren pH-Bereich liegen, wie beispielsweise bei lysosomalen Proteinen. In anderen Fällen kann dieses jedoch auch im Basischen liegen. Im Bereich des pH-Optimums ist ein Protein am stabilsten und denaturiert daher nicht.

Die Säuredenaturierung, beispielsweise mit 40 % (V/V) Essigsäure, führt zu Ladungsverschiebungen zwischen den Molekülen und letzten Endes zu einer Umfaltung des Proteins in den unter den jeweiligen Bedingungen energetisch günstigsten Zustand. Die Säure gibt Protonen (H+) ab und verursacht damit die Ladungsänderung in der Proteinstruktur, sodass die Wasserstoffbrückenbindungen teilweise zerstört werden und die gleichen positiven Ladungen sich gegenseitig abstoßen. Zusätzlich gibt die Säure Protonen (H+) an die Carboxylatgruppe (COO) der Aminosäuren Aspartat und Glutamat ab, sodass Carboxygruppen –COOH entstehen und deren vorherigen negativen Ladungen verschwinden. Dies führt dazu, dass keine ionischen Wechselwirkungen zwischen der Carboxygruppe und den positiven Ladungen im Protein mehr möglich sind.

Entsprechendes können Laugen bewirken, auch sie ändern die Zusammensetzung der Ionen über den pH-Wert, jedoch werden Aminogruppen von Lysin oder Arginin deprotoniert, wodurch weniger positive Ladungen im Protein vorkommen, die mit negativ geladenen Gruppen wechselwirken könnten. Zusätzlich werden Carbonsäuregruppen zu Carboxylaten deprotoniert, wodurch Wasserstoffbrückenbindungen zerstört werden können und mehr negative Ladungen im Protein auftreten, die sich gegenseitig abstoßen.

Bei der Säure- oder Laugendenaturierung kann gleichzeitig eine Hydrolyse des Proteins auftreten.

Im Hinblick auf den pH-Wert ist auch der isoelektrische Punkt (pI) eines Proteins von Bedeutung. An diesem Punkt ist ein Protein in der Nettoladung ungeladen und fällt daher schnell aus der Lösung aus. Am pI ist das Protein somit sehr empfindlich.

Denaturierung durch Chaotrope

Formamid unterbricht die Basenpaarung von DNA

Auch Salze und andere Chaotrope haben einen Einfluss auf hydrophobe Effekte und können daher eine Denaturierung hervorrufen, wobei je nach Stoff, der Einfluss auch in Richtung Renaturierung gehen kann. Man spricht dann, bezüglich der Ausfällung, auch von „Einsalzen“ und „Aussalzen“. Der relative Einfluss der Salze bildenden Anionen und Kationen wird durch die „Hofmeister-Reihe“ beschrieben.

DNA wird durch Formamid (70 % V/V), Dimethylformamid,Guanidiniumsalze (6 M),[18] Natriumsalicylat,Sulfoxid, Dimethylsulfoxid (DMSO, 60 % V/V), Natriumhydroxid (1 M), verschiedene Alkohole, Propylenglykol und Harnstoff (6 M) denaturiert, meist in Kombination mit Wärme. Dabei erfolgt eine Absenkung der Schmelztemperatur der doppelsträngigen DNA.

Denaturierung durch Detergentien

Denaturierung eines Proteins mit SDS

Manche Tenside führen zur Denaturierung. Dies liegt daran, dass sie sich überall an das Protein anlagern und es dadurch linearisieren. Ionische Detergentien denaturieren am stärksten, z. B. eine einprozentige Lösung von Natriumlaurylsulfat (SDS). Bei Raumtemperatur werden bereits die meisten Proteine denaturiert. Daneben werden auch Membranlipide aus den Zellmembranen gelöst, indem sich ab einer bestimmten Konzentration Mizellen aus dem Tensid und der Membran bilden. Die SDS-Denaturierung wird z. B. in der Probenvorbereitung zur SDS-PAGE verwendet.

Denaturierung durch Ethanol

Entsprechend der Säuredenaturierung können Ethanol oder andere wasserlösliche, organische Lösungsmittel die in Biopolymeren zur Aufrechterhaltung der Struktur erforderlichen Wasserstoffbrücken und hydrophoben Wechselwirkungen stören, indem sie als polare organische Lösungsmittel interferieren. 50- bis 70-prozentiges Ethanol denaturiert die meisten Proteine. Da durch das Herauslösen der Membranlipide sowie durch die Denaturierung der Raumstruktur auch die Membranproteine ihre Funktion verlieren und die betreffenden Zellen seifenblasenartig platzen, kann so mit höherprozentigen Alkoholen (z. B. Ethanol, Isopropanol) desinfiziert werden: Bakterien– und Pilzzellen werden über die Denaturierung ihrer Membranproteine und der Durchlöcherung ihrer Zellmembran irreversibel inaktiviert, entsprechend werden behüllte Viren gleichzeitig zur Denaturierung der Proteine auch ihrer Lipidhülle beraubt, in der die Andockproteine sitzen.

Denaturierung durch reines Wasser

Proteine liegen in ihrer natürlichen Umgebung in Gegenwart von anderen Proteinen, gelösten Salzen, Cofaktoren oder Metaboliten vor, die auf mehr oder weniger komplexe Weise die natürliche Proteinstruktur stabilisieren. Entfernt man Salze und andere kleinere Moleküle durch Dialyse einer Proteinlösung gegen bidestilliertes Wasser – vorzugsweise in der Kälte –, kann man oft selektive (und reversible) Denaturierung vor allem von großen Proteinen erreichen, die unter diesen Bedingungen ausgefällt werden (präzipitieren).

Denaturierung durch Modifikation und Vernetzung

Auch durch die Verwendung von Molekülmarkierungen, Fixierungslösungen und Gerbstoffen, kovalenten Vernetzern (z. B. Formaldehyd, Paraformaldehyd oder Glutaraldehyd) und Lösungen von stabile Komplexe ausbildenden Schwermetallionen wird gelegentlich das katalytische Zentrum oder eine Bindungsstelle eines Proteins so verändert, dass manche Funktionen nicht mehr erfüllt werden. Das Protein wird hierbei nicht (wie bei den thermischen, chaotropen oder pH-abhängigen Denaturierungen) entfaltet, es kann dabei jedoch verändert oder in einer nicht-nativen Konformation fixiert werden und Funktionen verlieren. Bleiben notwendige Funktionen des Proteins von der Fixierung unberührt, so können durch eine Vernetzung auch andere Eigenschaften wie die biologische Halbwertszeit verändert werden. Im Zuge einer Antigendemaskierung wird versucht, die Effekte der Fixierung rückgängig zu machen.

Denaturierung in Lebewesen

Beginn der Denaturierung von DNA

Proteine werden in Zellen teilweise vor einem Membrantransport durch Chaperone entfaltet und falten sich anschließend zurück. Die Basenpaarung von DNA wird durch verschiedene DNA-bindende Proteine abschnittsweise aufgehoben, z. B. bei der Replikation oder der Transkription. Der Ort des Denaturierungsbeginns wird als Denaturierungsblase bezeichnet und im Poland-Scheraga-Modell beschrieben. Jedoch wird die DNA-Sequenz, die Steifigkeit und die Torsion nicht miteinbezogen. Die Lebensdauer einer Denaturierungsblase beträgt zwischen einer Mikrosekunde und einer Millisekunde.

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden /  Ändern )

Google Foto

Du kommentierst mit Deinem Google-Konto. Abmelden /  Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden /  Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden /  Ändern )

Verbinde mit %s